Fórum de Matemática | DÚVIDAS? Nós respondemos!
https://forumdematematica.org/

Valor mínimo do produto
https://forumdematematica.org/viewtopic.php?f=70&t=1887
Página 1 de 1

Autor:  hmmalafaia [ 25 fev 2013, 21:09 ]
Título da Pergunta:  Valor mínimo do produto

Sabendo que \(\frac{1}{a^2} + \frac{1}{b^2} = 2196\), calcule o valor minimo do produto \(a \cdot b\)

Autor:  João P. Ferreira [ 25 fev 2013, 21:44 ]
Título da Pergunta:  Re: Valor mínimo do produto

isso é equivalente a

\(b^2+a^2=2196(ab)^2\)

\(ab=\sqrt{\frac{a^2+b^2}{2196}}\)

Autor:  Sobolev [ 25 fev 2013, 23:55 ]
Título da Pergunta:  Re: Valor mínimo do produto

Trata-se de um simples problema de optimização... Sob a hipótese de a,b não se anularem temos

\(\frac{1}{a^2}+\frac{1}{b^2}= 2196 \Leftrightarrow a^2 = \frac{1}{2196-\frac{1}{b^2}}\Leftrightarrow a = \pm \sqrt{\frac{b^2}{2196 b^2 -1}}\)

Supondo, sem perda de generalidade, que \(a >0\), queremos minimizar a função

\(f(b) = b \sqrt{\frac{b^2}{2196 b^2 -1}}\)

Tendo em conta que esta função não é limitada inferiormente, o problema proposto não tem solução... ou podemos dizer que o valor mímino será \(- \infty\)

Autor:  hmmalafaia [ 26 fev 2013, 00:36 ]
Título da Pergunta:  Re: Valor mínimo do produto

Po galera obrigado pelas respostas mas segundo gabarito da lista de exercício a resposta é : a·b = 1/1098.
HELP PLEASE !!!!

Autor:  Sobolev [ 26 fev 2013, 10:02 ]
Título da Pergunta:  Re: Valor mínimo do produto

hmmalafaia,

Ou o gabarito está ERRADO ou voçê não colocou toda a informação. Repare por exemplo que se considerar

\(a = \frac{1}{\sqrt{1098}}, \qquad b = - \frac{1}{\sqrt{1098}}\)

é verificada a restrição proposta e tem-se \(ab = -\frac{1}{1098}\). Vemos assim, sem sombra de dúvida, que 1/1098 não é o valor mínimo do produto a b.

Agora, se voçê tiver deixado de lado alguma informação, por exemplo se a e b tiverem que ser positivos, o gabarito já estaria correcto.

Página 1 de 1 Os Horários são TMG [ DST ]
Powered by phpBB® Forum Software © phpBB Group
https://www.phpbb.com/