Fórum de Matemática
DÚVIDAS? Nós respondemos!

Um Fórum em Português dedicado à Matemática
Data/Hora: 24 jun 2025, 08:26

Os Horários são TMG [ DST ]




Fazer Nova Pergunta Responder a este Tópico  [ 2 mensagens ] 
Autor Mensagem
 Título da Pergunta: Teorema de conjuntos bem-ordenados
MensagemEnviado: 20 mai 2013, 18:44 
Offline

Registado: 04 abr 2013, 20:42
Mensagens: 2
Localização: Paraiba
Agradeceu: 0 vez(es)
Foi agradecido: 0 vez(es)
Olá, estou com dificuldades de enteder esse teorema, se possivel eu estou precisando de uma explicação ou demostração.


Seja A um conjunto bem-ordenado, seja B um subconjunto de A e seja f: A -> B (A implica em B) uma representação por semelhança de A em B.Assim,para cada a \(a \epsilon A\) (a pertence a A), \(a \preceq f(a).\)


Topo
 Perfil  
 
MensagemEnviado: 23 mai 2013, 18:55 
Offline

Registado: 14 dez 2011, 15:59
Mensagens: 897
Localização: Portugal
Agradeceu: 20 vezes
Foi agradecido: 373 vezes
Desculpe a minha ignorância mas podia-me explicar o que é:

Citar:
seja f: A -> B (A implica em B) uma representação por semelhança de A em B.


PS- Tenho o palpite que é o mesmo que dizer que f é uma injeção estritamente crescente (i.e. \(a<a' \Rightarrow f(a)<f(a')\)) mas como não tenho a certeza vou esperar por mais esclarecimentos.


Topo
 Perfil  
 
Mostrar mensagens anteriores:  Ordenar por  
Fazer Nova Pergunta Responder a este Tópico  [ 2 mensagens ] 

Os Horários são TMG [ DST ]


Quem está ligado:

Utilizadores a ver este Fórum: Google [Bot] e 16 visitantes


Criar perguntas: Proibído
Responder a perguntas: Proibído
Editar Mensagens: Proibído
Apagar Mensagens: Proibído
Enviar anexos: Proibído

Pesquisar por:
Ir para:  
cron