neoreload Escreveu:Quem puder ajudar agradeço muito:
Simplificar: \(\dfrac{\dfrac{1}{x+h}-\dfrac{1}{x}}{h}\)
\(\frac{\frac{1}{x + h} - \frac{1}{x}}{h} =\)
\(\frac{\frac{1}{(x + h)/x} - \frac{1}{x/(x + h)}}{h} =\)
\(\frac{\frac{x - (x + h)}{x(x + h)}}{h} =\)
\(\frac{\frac{\cancel{x} - \cancel{x} - h}{x(x + h)}}{h} =\)
\(\frac{\frac{ - h}{x(x + h)}}{h} = \frac{- h}{x(x + h)} \div h\)
\(\frac{- h}{x(x + h)} \cdot \frac{1}{h} =\)
\(\frac{- h}{x(x + h)h} =\)
\(\frac{- \cancel{h}}{x(x + h)\cancel{h}} =\)
\(\fbox{- \frac{1}{x(x + h)}}\)