17 jul 2014, 23:39
\(\left (\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}-2 \right ):\left ( \frac{a}{b}+\frac{b}{a}-2 \right )\)
mostrar expressão equivalente
18 jul 2014, 03:03
Boa noite,
aqui vai a minha proposta de resolução:
\(\left ( \frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}-2 \right ):\left ( \frac{a}{b}+\frac{b}{a}-2 \right )= \left ( \frac{a^{4}+b^{4}-2a^{2}b^{2}}{a^{2}b^{2}} \right ):\left ( \frac{a^{2}+b^{2}-2ab}{ab} \right )= \left ( \frac{a^{4}+b^{4}-2a^{2}b^{2}}{a^{2}b^{2}} \right )\times \left ( \frac{ab}{a^{2}+b^{2}-2ab} \right )= \frac{\left ( a^{2}-b^{2} \right )^{2}}{ab\left ( a-b \right )^{2}}=\frac{\left [ (a-b)(a+b) \right ]^{2}}{ab(a-b)^{2}}=\frac{\left ( a-b \right )^{2}\left ( a+b \right )^{2}}{ab(a-b)^{2}}=\frac{\left ( a+b \right )^{2}}{ab}\)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.