Fórum de Matemática
DÚVIDAS? Nós respondemos!

Um Fórum em Português dedicado à Matemática
Data/Hora: 20 jun 2025, 16:13

Os Horários são TMG [ DST ]




Fazer Nova Pergunta Responder a este Tópico  [ 3 mensagens ] 
Autor Mensagem
MensagemEnviado: 29 ago 2015, 15:27 
Offline

Registado: 29 ago 2015, 15:18
Mensagens: 2
Localização: ESPÍRITO SANTO
Agradeceu: 1 vez(es)
Foi agradecido: 0 vez(es)
Pessoal, estou tentando aprender depois de velho o que não aprendi nos 11 anos do ensino básico.
Se alguém pudesse explicar como se fosse para uma criança de 10 anos o cálculo abaixo, seria imensamente grato!


Anexos:
Dúvida_Racionalização.jpg
Dúvida_Racionalização.jpg [ 195.75 KiB | Visualizado 1817 vezes ]
Topo
 Perfil  
 
MensagemEnviado: 29 ago 2015, 16:58 
Offline

Registado: 13 ago 2015, 03:25
Mensagens: 41
Localização: ASuncion/Paraguay
Agradeceu: 0 vez(es)
Foi agradecido: 17 vezes
OLa
\(z = \dfrac{(x - 2\sqrt{3})(3 + y\sqrt{3})}{(3- y\sqrt{3})(3 + y\sqrt{3})} = \dfrac{x(3 + y\sqrt{3}) - 2\sqrt{3}(3 +y\sqrt{3})}{9 - 3y^2}= \dfrac{3x + xy\sqrt{3} - 6\sqrt{3} - 6y}{9 - 3y^2}\)
porque \(2\sqrt{3}\times y\sqrt{3} = 2\times 3 y = 6y\)
Don Danny

_________________
Gosto de ajudar em Matematicas
http://www.nuevos-metodos-geometria-analitica.com


Topo
 Perfil  
 
MensagemEnviado: 29 ago 2015, 18:46 
Offline

Registado: 29 ago 2015, 15:18
Mensagens: 2
Localização: ESPÍRITO SANTO
Agradeceu: 1 vez(es)
Foi agradecido: 0 vez(es)
Don Danny

Muito obrigado pelo esclarecimento! Ajudou MUITO!!!
Só para finalizar (e orientar meu raciocínio), qual o nome dessa propriedade da racionalização? A que permite simplificar \(2\sqrt{3}\times y\sqrt{3}\) em 2 x 3y?
Obrigado!


Topo
 Perfil  
 
Mostrar mensagens anteriores:  Ordenar por  
Fazer Nova Pergunta Responder a este Tópico  [ 3 mensagens ] 

Os Horários são TMG [ DST ]


Quem está ligado:

Utilizadores a ver este Fórum: Nenhum utilizador registado e 12 visitantes


Criar perguntas: Proibído
Responder a perguntas: Proibído
Editar Mensagens: Proibído
Apagar Mensagens: Proibído
Enviar anexos: Proibído

Pesquisar por:
Ir para: