Sob a ação de fortes ventanias, algumas pontes podem oscilar muito, comprometendo a segurança de quem nelas trafega. Alguns sistemas de amortecimento utilizam molas, combinadas com pesos, fazendo com que a oscilação, \(y(t)=2^{-(t/2)}sen(\frac{\pi*t}{2})\), medida em metros, diminua à medida que o tempo t, medido em minutos, cresça.
Se as condições seguras de tráfego exigem que as oscilações satisfaçam à condição \(\left |y(t) \right |\leq 0,125\) metros, a partir de que instante (em minutos) a ponte poderá ser liberada ao tráfego quando submetida à ação de fortes ventanias?
A) 2
B) 4
C) 6
D) 5
RESPOSTA -
CFaço Direito por isso minha matemática está um pouco enferrujada

.
- Anexos
-

- randompic2.jpg (62.85 KiB) Visualizado 1362 vezes