Fórum de Matemática
DÚVIDAS? Nós respondemos!

Um Fórum em Português dedicado à Matemática
Data/Hora: 07 dez 2019, 14:31

Os Horários são TMG [ DST ]




Fazer Nova Pergunta Responder a este Tópico  [ 3 mensagens ] 
Autor Mensagem
MensagemEnviado: 31 mai 2019, 01:44 
Offline

Registado: 02 abr 2015, 12:57
Mensagens: 15
Localização: Rio de Janeiro
Agradeceu: 7 vezes
Foi agradecido: 0 vez(es)
j(x) = 2^(x^2 - 5x + 6) seria um exemplo de função quadrática ou exponencial?
Como o "x" encontra-se no expoente acredito ser exponencial, porém o gráfico fica como um gráfico quadrática, como também de uma g(x) = 2^(x^2).
Não entendo o porquê disso.


Topo
 Perfil  
 
MensagemEnviado: 11 jun 2019, 09:52 
Offline

Registado: 05 jan 2011, 12:35
Mensagens: 2227
Localização: Lisboa
Agradeceu: 662 vezes
Foi agradecido: 343 vezes
Uma função quadrática é do tipo \(f(x)=ax^2+bx+c\)

Uma função exponencial é do tipo \(g(x)=k^x\)

O que você tem é \(g(f(x))=k^{ax^2+bx+c}\)

E \(g(f(x))\) denomina-se de função composta. Ou seja, você tem uma função que é a composta de uma quadrática com uma exponencial.

_________________
João Pimentel Ferreira
 
Partilhe dúvidas e resultados, ajude a comunidade com a sua pergunta!
Não lhe dês o peixe, ensina-o a pescar (provérbio chinês)
Fortalecemos a quem ajudamos pouco, mas prejudicamos se ajudarmos muito (pensamento budista)


Topo
 Perfil  
 
MensagemEnviado: 11 jun 2019, 10:04 
Offline

Registado: 05 jan 2011, 12:35
Mensagens: 2227
Localização: Lisboa
Agradeceu: 662 vezes
Foi agradecido: 343 vezes
Repare ainda que

\(2^{x^2 - 5x + 6}=\)

\(=2^{x^2}.2^{- 5x}.2^6=\)

\(=64\frac{2^{x^2}}{32^{x}}\)

_________________
João Pimentel Ferreira
 
Partilhe dúvidas e resultados, ajude a comunidade com a sua pergunta!
Não lhe dês o peixe, ensina-o a pescar (provérbio chinês)
Fortalecemos a quem ajudamos pouco, mas prejudicamos se ajudarmos muito (pensamento budista)


Topo
 Perfil  
 
Mostrar mensagens anteriores:  Ordenar por  
Fazer Nova Pergunta Responder a este Tópico  [ 3 mensagens ] 

Os Horários são TMG [ DST ]


Quem está ligado:

Utilizador a ver este Fórum: Nenhum utilizador registado e 1 visitante


Criar perguntas: Proibído
Responder a perguntas: Proibído
Editar Mensagens: Proibído
Apagar Mensagens: Proibído
Enviar anexos: Proibído

Pesquisar por:
Ir para: