Responder

Resolver calculo de logaritmo

23 jun 2013, 18:48

Alguém pode me ajudar a resolver esse calculo de logaritmo
Sendo \(log_{x}2=a , log_{x}3=b\) calcule \(log_{x}{\sqrt[3]{12}}\)

Obrigada
Anexos
logaritmo.gif
logaritmo.gif (1.58 KiB) Visualizado 1561 vezes

Re: Resolver calculo de logaritmo

24 jun 2013, 00:35

\(log_x\sqrt[3]{12}= log_x\ 12^{\frac{1}{3}}=\frac{1}{3}log_x(2.2.3)=\frac{1}{3}log_x 2+ \frac{1}{3}log_x 2 + \frac{1}{3}log_x 3= \frac{2}{3}log_x2+\frac{1}{3}log_x3= \frac{2}{3}a+\frac{1}{3}b\)

Re: Resolver calculo de logaritmo

24 jun 2013, 01:46

\(\log_x \sqrt[3]{12} =\)

\(\log_x 12^{\frac{1}{3}} =\)

\(\frac{1}{3} \cdot \log_x 12 =\)

\(\frac{1}{3} \cdot \log_x (2^2 \cdot 3) =\)

\(\frac{1}{3} \cdot \left ( \log_x 2^2 + \log_x 3 \right ) =\)

\(\frac{1}{3} \cdot \log_x 2^2 + \frac{1}{3} \cdot \log_x 3 =\)

\(\frac{2}{3} \cdot \log_x 2 + \frac{1}{3} \cdot \log_x 3 =\)

\(\frac{2}{3} \cdot a + \frac{1}{3} \cdot b =\)

\(\fbox{\frac{2a}{3} + \frac{b}{3}}\)
Responder