Switch to full style
Responder

Polinômio, números complexos e matriz

13 nov 2020, 16:18

Sabendo que -2 é raiz do polinômio abaixo, em que x pertence ao conjunto dos números complexos, determine o valor da soma das demais raízes de p(x).

Imagem1.gif
Imagem1.gif (1.95 KiB) Visualizado 678 vezes


a) 0
b) 1
c) 2
d) 3
e) 4

Re: Polinômio, números complexos e matriz

15 nov 2020, 16:10

Olá FISMAQUI!

Uma vez que,

\(\mathtt{P(x) = \begin{vmatrix} \mathtt{x} & \mathtt{- 1} & \mathtt{1} \\ \mathtt{1} & \mathtt{x} & \mathtt{0} \\ \mathtt{0} & \mathtt{k} & \mathtt{x} \end{vmatrix}}\)

Teremos,

\(\\ \mathtt{P(x) = \begin{bmatrix} \mathtt{x} & \mathtt{- 1} & \mathtt{1} & | & \mathtt{x} & \mathtt{- 1} \\ \mathtt{1} & \mathtt{x} & \mathtt{0} & | & \mathtt{1} & \mathtt{x} \\ \mathtt{0} & \mathtt{k} & \mathtt{x} & | & \mathtt{0} & \mathtt{k} \end{bmatrix}} \\\\ \mathtt{P(x) = x^3 + 0 + k + 0 + 0 + x} \\\\ \boxed{\mathtt{P(x) = x^3 + x + k}}\)

De acordo com o enunciado, \(\mathtt{- 2}\) é uma raiz do polinômio P. Portanto, temos que \(\boxed{\mathtt{P(- 2) = 0}}\).

Daí,

\(\\ \mathtt{P(x) = x^3 + x + k} \\\\ \mathtt{P(- 2) = (- 2)^3 + (- 2) + k} \\\\ \mathtt{0 = - 8 - 2 + k} \\\\ \boxed{\mathtt{k = 10}}\)


Com efeito,

\(\\ \mathtt{P(x) = x^3 + x + k} \\\\ \mathtt{P(x) = x^3 + x + 10} \\\\ \mathtt{P(x) = x^3 + 0x^2 + x + 10}\)


Logo, por Girard, tiramos que a soma das raízes do polinômio P é:

\(\\ \mathtt{Soma = - \frac{0}{1}} \\\\ \boxed{\mathtt{Soma = 0}}\)


Porém, devemos descartar a raiz dada no enunciado e, por fim, concluímos que...

\(\\ \texttt{Soma das raizes - raiz dada =} \\\\ \mathtt{0 - (- 2) =} \\\\ \boxed{\boxed{\boxed{2}}}\)
Responder