Fórum de Matemática | DÚVIDAS? Nós respondemos!
https://forumdematematica.org/

Como fazer a divisão de polinômios?
https://forumdematematica.org/viewtopic.php?f=73&t=705
Página 1 de 1

Autor:  priscilamoraes307 [ 07 ago 2012, 00:18 ]
Título da Pergunta:  Como fazer a divisão de polinômios?

A soma dos valores de a e b, para que o polinômio P(x) = x3 + ax + b seja divisível pelo
polinômio Q(x) = x2 + x + 1, é



A) 0
B) –1
C) 1
D) 5

Por favor não estou conseguindo efetuar a divisão do polinômio, se for possível detalha - la ficarei muito grata!

Autor:  João P. Ferreira [ 07 ago 2012, 10:54 ]
Título da Pergunta:  Re: POLINÔMIO

Boas

1

\(x^3+0.x^2+ax+b \ \ \ \|\underline{\ \ x^2+x+1}\)

2

\(x^3+0.x^2+ax+b \ \ \ |\underline{\ \ x^2+x+1}\\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x\)

3

\(x^3+0.x^2+ax+b \ \ \ |\underline{\ \ x^2+x+1}\\
x^3 \ \ \ \ \ x^2 \ \ \ \ \ x \ \ \ \ \ \ \ \ \ \ x\)

4

\(x^3+0.x^2+ax+b \ \ \ |\underline{\ \ x^2+x+1}\\
\underline{x^3 \ \ \ \ \ x^2 \ \ \ \ \ x \ \ \ } \ \ \ \ \ \ \ x\)

5

\(x^3+0.x^2+ax+b \ \ \ |\underline{\ \ x^2+x+1}\\
\underline{x^3 \ \ \ \ \ x^2 \ \ \ \ \ x \ \ \ } \ \ \ \ \ \ \ x\\
0 \ \ \ \ \ -x^2 \ \ \ (a-1)x \ \ \\)

6

\(x^3+0.x^2+ax+b \ \ \ |\underline{\ \ x^2+x+1}\\
\underline{x^3 \ \ \ \ \ x^2 \ \ \ \ \ x \ \ \ } \ \ \ \ \ \ \ x \ \ -1\\
0 \ \ \ \ \ -x^2 \ \ \ (a-1)x \ \ \\)


7

\(x^3+0.x^2\ +\ ax\ +\ \ b \ \ \ \ \ \ \ |\underline{\ \ x^2+x+1}\\
\underline{x^3 \ \ \ \ \ x^2 \ \ \ \ \ x \ \ \ } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x \ \ -1\\
0 \ \ \ \ \ -x^2 \ \ \ (a-1)x \ \ \ \\
\ \ \ \ \ \ -x^2 \ \ \ \ -x \ \ \ \ \ -1\)

8

\(x^3+0.x^2\ +\ ax\ +\ \ b \ \ \ \ \ \ \ |\underline{\ \ x^2+x+1}\\
\underline{x^3 \ \ \ \ \ x^2 \ \ \ \ \ x \ \ \ } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x \ \ -1\\
0 \ \ \ \ \ -x^2 \ \ \ (a-1)x \ \ \ \\
\ \ \ \ \underline{ \ -x^2 \ \ \ \ -x \ \ \ \ \ -1 \ } \\
\ \ \ \ \ \ \ \ \ 0 \ \ \ \ \ \ ax \ \ \ \ b+1\)

Para que seja divisível o resto tem de ser igual a zero, i.e.

\(ax+b+1=0\)

Como \(x\) pode ser qq valor então \(a=0\) e \(b=-1\)

Logo \(a+b=-1\)

resposta B)

Página 1 de 1 Os Horários são TMG [ DST ]
Powered by phpBB® Forum Software © phpBB Group
https://www.phpbb.com/