Fórum de Matemática
DÚVIDAS? Nós respondemos!

Um Fórum em Português dedicado à Matemática
Data/Hora: 16 nov 2019, 23:33

Os Horários são TMG [ DST ]




Fazer Nova Pergunta Responder a este Tópico  [ 6 mensagens ] 
Autor Mensagem
 Título da Pergunta: Ponto de tangência à curva
MensagemEnviado: 24 mar 2018, 16:49 
Offline

Registado: 22 jan 2016, 18:25
Mensagens: 168
Localização: santos dumont - mg
Agradeceu: 44 vezes
Foi agradecido: 23 vezes
Encontrar o ponto de contato da tangente à curva y=√(x^2-2x+9), perpendicular à reta y/3-x/5+9/7=0


Topo
 Perfil  
 
 Título da Pergunta: Re: Ponto de tangência à curva
MensagemEnviado: 25 mar 2018, 19:21 
Offline

Registado: 05 jan 2011, 12:35
Mensagens: 2227
Localização: Lisboa
Agradeceu: 662 vezes
Foi agradecido: 343 vezes
refere-se a

\(y=\sqrt{x^2-2x+9}\) ?

Uma reta é dada por \(y=ax+b\)
em que \(a\) é a inclinação da reta e \(b\) a ordenada na origem

a função derivada de uma função que represente uma curva indica a inclinação da reta tangente a essa mesma curva, assim sendo, derivando

\(y'=\frac{2x-2}{2\sqrt{x^2-2x+9}}=\frac{x-1}{\sqrt{x^2-2x+9}}\)

esta função derivada indica, em cada ponto, a inclinação da reta tangente da função \(y(x)\)

Sendo \(m\) uma determinada inclinação, a sua inclinação perpendicular é dada por \(-\frac{1}{m}\)

então, a inclinação perpendicular à função definida por \(y'\) é dada por

\(-\frac{\sqrt{x^2-2x+9}}{x-1}\)

basta agora achar a inclinação da reta \(y/3-x/5+9/7=0\) ou seja colocando na forma \(y=ax+b\), sendo \(a\) a inclinação, e depois, igualar esse \(a\) à equação anterior

_________________
João Pimentel Ferreira
 
Partilhe dúvidas e resultados, ajude a comunidade com a sua pergunta!
Não lhe dês o peixe, ensina-o a pescar (provérbio chinês)
Fortalecemos a quem ajudamos pouco, mas prejudicamos se ajudarmos muito (pensamento budista)


Topo
 Perfil  
 
 Título da Pergunta: Re: Ponto de tangência à curva
MensagemEnviado: 25 mar 2018, 19:37 
Offline

Registado: 22 jan 2016, 18:25
Mensagens: 168
Localização: santos dumont - mg
Agradeceu: 44 vezes
Foi agradecido: 23 vezes
Grato João, tentei por essa forma mais a igualdade não encontra raízes reais. Creio que há algum erro no enunciado


Topo
 Perfil  
 
 Título da Pergunta: Re: Ponto de tangência à curva
MensagemEnviado: 26 mar 2018, 20:24 
Offline

Registado: 05 jan 2011, 12:35
Mensagens: 2227
Localização: Lisboa
Agradeceu: 662 vezes
Foi agradecido: 343 vezes
Olá Petras

\(y/3-x/5+9/7=0\)

corresponde a

\(y/3=x/5-9/7\)

\(y=3/5.x-27/7\)

ou seja, \(a=3/5\)


então

\(-\frac{\sqrt{x^2-2x+9}}{x-1}=\frac{3}{5}\)

repare que para resolver esta equação não tem de achar as raízes do polinómio, basta resolver achando o quadrado dos dois lados

visto que se \(a=b\) logo \(a^2=b^2\)

logo

\(-\frac{\sqrt{x^2-2x+9}}{x-1}=\frac{3}{5}\)

\(\left(-\frac{\sqrt{x^2-2x+9}}{x-1}\right)^2=\left(\frac{3}{5}\right)^2\)

\(\frac{x^2-2x+9}{(x-1)^2}=\frac{9}{25}\)

\(25(x^2-2x+9)=9(x^2-2x+1)\)

agora é fácil

_________________
João Pimentel Ferreira
 
Partilhe dúvidas e resultados, ajude a comunidade com a sua pergunta!
Não lhe dês o peixe, ensina-o a pescar (provérbio chinês)
Fortalecemos a quem ajudamos pouco, mas prejudicamos se ajudarmos muito (pensamento budista)


Topo
 Perfil  
 
 Título da Pergunta: Re: Ponto de tangência à curva
MensagemEnviado: 26 mar 2018, 20:35 
Offline

Registado: 22 jan 2016, 18:25
Mensagens: 168
Localização: santos dumont - mg
Agradeceu: 44 vezes
Foi agradecido: 23 vezes
Como lhe disse anteriormente a função que se chega não tem raízes, por isso, desconfiei que o enunciado deveria estar errado. A equação da reta correta seria y/3-x+9/7.

Veja se está correta a resolução.



\(\mathsf{\frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx}\rightarrow
f=\sqrt{u},\:\:u=x^2-2x+9\\ \frac{d}{du}(\sqrt{u})\cdot \frac{d}{dx}(x^2-2x+9)}\)

\(\mathsf{ \frac{d}{du}(\sqrt{u})=\frac{1}{2\sqrt{u}}\\
\frac{d}{dx}=2x-2\\
\frac{1}{2\sqrt{u}}\cdot(2x-2)~substituindo ~u~\rightarrow \frac{2x-2}{2\sqrt{x^2-2x+9)}}=\frac{x-1}{\sqrt{x^2-2x+9}}}\)

Como a tangente é perpendicular à reta \(\mathsf{ \frac{y}{3}-x+\frac{9}{7}=0}\) sua declividade deverá ser \(-\frac{1}{m}\)

\(\mathsf{ \frac{y}{3}-x+\frac{9}{7}=0\rightarrow y=3x+\frac{27}{7} \rightarrow m=3\rightarrow m_{\perp}=-\frac{1}{3}}\)

Igualando: \(\mathsf{\frac{x-1}{\sqrt{x^2-2x+9}}=-\frac{1}{3}\rightarrow x=0}\)

\(\mathsf{\therefore y = \sqrt{x^2-2x+9}=\sqrt{0-0+9}=3}\)

Ponto = (0,3)


Topo
 Perfil  
 
 Título da Pergunta: Re: Ponto de tangência à curva
MensagemEnviado: 28 mar 2018, 19:27 
Offline

Registado: 05 jan 2011, 12:35
Mensagens: 2227
Localização: Lisboa
Agradeceu: 662 vezes
Foi agradecido: 343 vezes
Parece-me tudo bem, mas a partir desta parte

\(\frac{x-1}{\sqrt{x^2-2x+9}}=-\frac{1}{3}\)

tem de achar o \(x\), ou seja


\(3(x-1)=-\sqrt{x^2-2x+9}\)

achando o quadrado dos dois lados, considerando que \((-\sqrt{u})^2=u\)

\(9(x-1)^2=x^2-2x+9\)

\(9(x^2-2x+1)=x^2-2x+9\)

\(9x^2-18x+9=x^2-2x+9\)

\(9x^2-18x=x^2-2x\)

\(x(9x-18)=x(x-2)\)

\(x=0\) ou \(9x-18=x-2\)

_________________
João Pimentel Ferreira
 
Partilhe dúvidas e resultados, ajude a comunidade com a sua pergunta!
Não lhe dês o peixe, ensina-o a pescar (provérbio chinês)
Fortalecemos a quem ajudamos pouco, mas prejudicamos se ajudarmos muito (pensamento budista)


Topo
 Perfil  
 
Mostrar mensagens anteriores:  Ordenar por  
Fazer Nova Pergunta Responder a este Tópico  [ 6 mensagens ] 

Os Horários são TMG [ DST ]


Quem está ligado:

Utilizador a ver este Fórum: Nenhum utilizador registado e 1 visitante


Criar perguntas: Proibído
Responder a perguntas: Proibído
Editar Mensagens: Proibído
Apagar Mensagens: Proibído
Enviar anexos: Proibído

Pesquisar por:
Ir para: