Fórum de Matemática | DÚVIDAS? Nós respondemos!
https://forumdematematica.org/

derivar 3-x√x +(3x²)/(√x³)
https://forumdematematica.org/viewtopic.php?f=8&t=865
Página 1 de 1

Autor:  Anags [ 29 set 2012, 21:53 ]
Título da Pergunta:  derivar 3-x√x +(3x²)/(√x³)

A minha segunda duvida é neste exercicio:
derivar a seguinte equação: \(3-x\sqrt{x} + \frac{3x^{2}}{\sqrt{x^{3}}}\)
penso que o objectivo é utilizar a regra da potenciação porque já tentei através das outras e nunca chego ao resultado pretendido.
desde já muito obrigado

Autor:  danjr5 [ 29 set 2012, 22:33 ]
Título da Pergunta:  Re: derivar [tex]3-x\sqrt{x} + \frac{3x^{2}}{\sqrt{x^{3}}}[/

Talvez utilizando potência seja mesmo mais fácil.

\(\fbox{y = 3 - x\sqrt{x} + \frac{3x^2}{\sqrt{x^3}}}\)


\(y = 3 - x\sqrt{x} + \frac{3x^2}{x\sqrt{x}}\)


\(y = 3 - x\sqrt{x} + \frac{3x}{\sqrt{x}} \times \frac{\sqrt{x}}{\sqrt{x}}\)


\(y = 3 - x\sqrt{x} + \frac{3x\sqrt{x}}{x}\)


\(y = 3 - x\sqrt{x} + 3\sqrt{x}\)

\(\fbox{y = 3 - x^{\frac{2}{3}} + 3x^{\frac{1}{2}}}\)


\(y' = - \frac{2}{3} \times x^{\left ( \frac{2}{3} - 1 \right )} + \frac{2}{3} \times x^{\left ( \frac{2}{3} - 1 \right )}\)


\(y' = - \frac{2}{3} \times x^{- \frac{1}{3}} + \frac{3}{2} \times x^{- \frac{1}{2}}\)


\(\fbox{\fbox{y' = - \frac{2}{3\sqrt[3]{x}} + \frac{3}{2\sqrt{x}}}}\)

Qual é o resultado pretendido?

Autor:  Anags [ 29 set 2012, 22:42 ]
Título da Pergunta:  Re: derivar [tex]3-x\sqrt{x} + \frac{3x^{2}}{\sqrt{x^{3}}}[/

o resultado seria: \(\frac{3}{2}x^{\frac{1}{2}} + \frac{3}{2}x^{\frac{1}{2}}\)

Autor:  danjr5 [ 29 set 2012, 23:07 ]
Título da Pergunta:  Re: derivar [tex]3-x\sqrt{x} + \frac{3x^{2}}{\sqrt{x^{3}}}[/

Cometi um erro na 6ª linha. Inverti o expoente do segundo termo.

danjr5 Escreveu:
Talvez utilizando potência seja mesmo mais fácil.

\(\fbox{y = 3 - x\sqrt{x} + \frac{3x^2}{\sqrt{x^3}}}\)


\(y = 3 - x\sqrt{x} + \frac{3x^2}{x\sqrt{x}}\)


\(y = 3 - x\sqrt{x} + \frac{3x}{\sqrt{x}} \times \frac{\sqrt{x}}{\sqrt{x}}\)


\(y = 3 - x\sqrt{x} + \frac{3x\sqrt{x}}{x}\)


\(y = 3 - x\sqrt{x} + 3\sqrt{x}\)

\(\fbox{y = 3 - x^{\frac{3}{2}} + 3x^{\frac{1}{2}}}\)


\(y' = - \frac{3}{2} \times x^{\left ( \frac{3}{2} - 1 \right )} + \frac{3}{2} \times x^{\left ( \frac{1}{2} - 1 \right )}\)


\(\fbox{\fbox{y' = - \frac{3}{2} \times x^{\frac{1}{2}} + \frac{3}{2} \times x^{- \frac{1}{2}}}}\)

Qual é o resultado pretendido?

Página 1 de 1 Os Horários são TMG [ DST ]
Powered by phpBB® Forum Software © phpBB Group
https://www.phpbb.com/