Fórum de Matemática | DÚVIDAS? Nós respondemos!
https://forumdematematica.org/

Determinar a função comprimento de arco e calcular o comprimento
https://forumdematematica.org/viewtopic.php?f=9&t=14253
Página 1 de 1

Autor:  BossMvP [ 10 dez 2019, 16:20 ]
Título da Pergunta:  Determinar a função comprimento de arco e calcular o comprimento

Determine a função comprimento de arco e calcule o comprimento de arco para o intervalo indicado:

\(\alpha\left ( t \right )=\left (3\cos\left ( t \right ),\;3\sin\left ( t \right ),\;4t \right ),\;t\in\left [ 0,\pi \right ]\)

Autor:  João P. Ferreira [ 11 dez 2019, 14:35 ]
Título da Pergunta:  Re: Determinar a função comprimento de arco e calcular o comprimento  [resolvida]

Sabemos que o comprimento do arco é dado por

\(L = \int\limits_{a}^{b} \sqrt{\left ( \frac{dx(t)}{dt} \right )^2 + \left ( \frac{dy(t)}{dt} \right )^2 + \left ( \frac{dz(t)}{dt} \right )^2}dt\)

\(L = \int_{a}^{b} || \vec{r}\prime (t)||dt\)

Logo, para o seu caso, considerando que \(\frac{d\sin(x)}{dx}=\cos(x)\) e que \(\frac{d\cos(x)}{dx}=-\sin(x)\), ficamos com

\(L = \int\limits_{0}^{\pi} \sqrt{\left ( -3\sin(t) \right )^2 + \left ( 3\cos(t) \right )^2 + 4^2}dt\)

\(L = \int\limits_{0}^{\pi} \sqrt{9\left ( \sin^2(t) + \cos^2(t) \right ) + 4^2}dt\)

Lembre-se que \(\sin^2(t) + \cos^2(t) = 1\)

Logo, resulta

\(L = \int\limits_{0}^{\pi} \sqrt{9 + 16}dt=\int\limits_{0}^{\pi} 5 dt=5 \int\limits_{0}^{\pi} 1 dt = 5\pi\)

Página 1 de 1 Os Horários são TMG [ DST ]
Powered by phpBB® Forum Software © phpBB Group
https://www.phpbb.com/