Coloque aqui todas as dúvidas que tiver sobre limites, regra de Cauchy ou L'Hopital, limites notáveis e afins
Responder

Limite de Função de Duas Variáveis

11 Oct 2013, 01:31

Mostre que o limite a seguir é igual a 2:
\(lim_{(x, y)\rightarrow (0, 0)}\frac{x^4+x^2y^2}{x^2\sqrt{(y-1)^2+2y+(x+2)^2-4x-4}-x^2}\)

Re: Limite de Função de Duas Variáveis

11 Oct 2013, 03:39

raimundojr Escreveu:Mostre que o limite a seguir é igual a 2:
\(\lim_{(x, y)\rightarrow (0, 0)}\frac{x^4+x^2y^2}{x^2\sqrt{(y-1)^2+2y+(x+2)^2-4x-4}-x^2}\)


vamos lá.

\(\\\\\\ \lim_{(x, y)\rightarrow (0, 0)}\frac{x^4+x^2y^2}{x^2\sqrt{(y-1)^2+2y+(x+2)^2-4x-4}-x^2} \\\\\\ \lim_{(x, y)\rightarrow (0, 0)}\frac{x^4+x^2y^2}{x^2\sqrt{y^{2}-2y+1+2y+x^{2}+4x+4-4x-4}-x^2} \\\\\\ \lim_{(x, y)\rightarrow (0, 0)}\frac{x^4+x^2y^2}{x^2\sqrt{x^{2}+y^{2}+1}-x^2} \\\\\\ \lim_{(x, y)\rightarrow (0, 0)}\frac{x^{2}(x^2+y^2)}{x^2(\sqrt{x^{2}+y^{2}+1}-1)} \\\\\\ \lim_{(x, y)\rightarrow (0, 0)}\frac{x^2+y^2}{\sqrt{x^{2}+y^{2}+1}-1}\)

agora utilizaremos as coordenadas polares : \(x=r*cos\theta\),\(y=r*sen\theta\) e \(r^2=x^2+y^2\)

\(\\\\\\ \lim_{r\rightarrow 0}\frac{r^2}{\sqrt{r^{2}+1}-1} \\\\\\ \lim_{r\rightarrow 0}\frac{r^2(\sqrt{r^{2}+1}+1)}{(\sqrt{r^{2}+1}-1)*(\sqrt{r^{2}+1}+1)} \\\\\\ \lim_{r\rightarrow 0}\frac{r^2(\sqrt{r^{2}+1}+1)}{r^{2}+1-1}=2 \\\\\\\)

att e bons estudos :)
Responder