npl Escreveu:Que é isso do "spoiler"?
A resposta!
\(p(x) = \left [ \left ( 1 + x \right ) \left ( 1 + 3x^3 \right ) \left ( 1 + 9x^9 \right ) \left ( 1 + 27x^{27} \right ) \right ]^2\)
\(p(x) = \left ( 1 + x \right )^2 \cdot \left ( 1 + 3x^3 \right )^2 \cdot \left ( 1 + 9x^9 \right )^2 \cdot \left ( 1 + 27x^{27} \right )^2\)
\(p(x) = \left ( 1 + 2x + x^2 \right ) \cdot \left ( 1 + 6x^3 + 9x^6 \right ) \cdot \left ( 1 + 18x^9 + 81x^{18} \right ) \cdot \left ( 1 + 54x^{27} + 729x^{54} \right )\)
\(p(x) = \left ( \fbox{x^0} + 2x + x^2 \right ) \cdot \left ( 1 + 6x^3 + \fbox{9x^6} \right ) \cdot \left ( \fbox{x^0} + 18x^9 + 81x^{18} \right ) \cdot \left ( 1 + \fbox{54x^{27}} + 729x^{54} \right )\)
Multiplicando os termos (que nos dá \(x^{33}\)) em destaque,
\(\\ x^0 \cdot 9x^6 \cdot x^0 \cdot 54x^{27} = \\\\ \fbox{486x^{33}}\)