Todas as dúvidas sobre sistemas lineares de equações e Progressões aritméticas ou geométricas
Responder

Progressão Aritmética e Geométrica Concurso Inmetro

20 jul 2014, 20:56

Três técnicos executaram a calibração de 54 instrumentos de medição. Os números de instrumentos calibrados por cada técnicos podem ser dispostos em ordem crescente de modo a construir três termos de uma progressão aritmética. Adicionando-se 3 ao maior termo dessa progressão, ela se transforma em uma progressão geométrica.
Quantos instrumentos cada técnico calibrou?

Re: Progressão Aritmética e Geométrica Concurso Inmetro

20 jul 2014, 23:44

Boa noite,

Vamos chamar de \(m\) a quantidade de instrumentos calibrados pelo técnico que ficou no meio, pela ordem crescente.

Usando os dados do problema teremos as seguintes relações:
\(PA: m-r + m + m + r = 54 \Leftrightarrow m = 18\)
e
\(PG: \frac{m}{q} + m + mq = 54 + 3 \Leftrightarrow q = \frac{2}{3} \text{ ou } q = \frac{3}{2}\)
Como se trata de colocar as quantidades em ordem crescente então usemos o valor \(q = \frac{3}{2}\)

Dessa forma, a quantidade de instrumentos do primeiro técnico foi \(\frac{m}{\frac{3}{2}} = \frac{18}{\frac{3}{2}} = 12\)
e portanto o terceiro calibrou \(24\) instrumentos.

Re: Progressão Aritmética e Geométrica Concurso Inmetro

21 jul 2014, 11:20

Obrigado!

Só não entendi por que a razão é 2/3 ou 3/2?
Seria uma constante para este tipo de exercício já que são duas raízes entre três termos?

Att,
Luciano

Re: Progressão Aritmética e Geométrica Concurso Inmetro  [resolvida]

21 jul 2014, 13:34

Bom dia,

Não é uma constante. É um resultado dos dados desse problema, veja o desenvolvimento da expressão da PG:

\(\frac{m}{q}+m+mq=57 \Leftrightarrow \frac{m}{q} + \frac{mq}{q} + \frac{mq^2}{q}=\frac{57q}{q}\)

\(\Leftrightarrow m + mq + mq^2 = 57q \Leftrightarrow mq^2 +(m-57)q +m = 0\)

Substituindo o valor de \(m\) encontrado na PA:

\(\Leftrightarrow {18q^2} +(18-57)q + {18} = 0 \Leftrightarrow 3(6q^2-13q + 6) = 0\)

Então os valores, candidatos a razão da PG, são as raízes da quadrática embutida na expressão acima.

Re: Progressão Aritmética e Geométrica Concurso Inmetro

21 jul 2014, 13:36

Mais uma coisa, como disse no início o valor \(\frac{2}{3}\) não foi usado como razão, pois tornaria a sequência descrescente.

Re: Progressão Aritmética e Geométrica Concurso Inmetro

21 jul 2014, 19:09

Muito obrigado!!!
Responder