Funções crescentes, decrescentes, monótonas, pares, ímpares, derivadas no ponto, etc.
26 abr 2015, 11:14
Até agora, tenho conseguido resolver este género de exercícios, no entanto não consigo resolver este (9.3).
APENAS 9.3!
26 abr 2015, 15:56
Consideremos \(f(x) = ax + b\) e \(g(x) = cx + d\). Calculemos \(f^{- 1}(x)\), \(g^{- 1}(x)\) e \((g \circ f)^{- 1}(x)\).
Função \(f\):
\(\\ y = ax + b \\\\ x = ay + b \\\\ ay = x - b \\\\ \fbox{f^{- 1}(x) = \frac{x}{a} - \frac{b}{a}}\)
Função \(g\):
\(\\ y = cx + d \\\\ x = cy + d \\\\ cy = x - d \\\\ \fbox{g^{- 1}(x) = \frac{x}{c} - \frac{d}{c}}\)
Função composta \(g \circ f\):
\(\\ (g \circ f)(x) = c(ax + b) + d \\\\ (g \circ f)(x) = acx + bc + d \\\\ y = acx + bc + d \\\\ x = acy + bc + d \\\\ acy = x - bc - d \\\\ \fbox{(g \circ f)^{- 1}(x) = \frac{x}{ac} - \frac{bc + d}{ac}}\)
Isto posto,
\((f^{- 1} \circ g^{- 1})(x) = (g \circ f)^{- 1}(x)\)
\(\frac{1}{a} \cdot \left ( \frac{x}{c} - \frac{d}{c} \right ) - \frac{b}{a} = \frac{x}{ac} - \frac{bc + d}{ac}\)
\(\frac{x}{ac} - \frac{d}{ac} - \frac{b}{a} = \frac{x}{ac} - \frac{bc + d}{ac}\)
\(\frac{x}{ac} - \frac{d + b \cdot c}{ac} = \frac{x}{ac} - \frac{bc + d}{ac}\)
\(\fbox{\fbox{\frac{x}{ac} - \frac{bc + d}{ac} = \frac{x}{ac} - \frac{bc + d}{ac}}}, \; \text{cqd.}\)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.